package mainimport ( "fmt")// Graph struct represents a directed graph using adjacency listtype Graph struct { V int // Number of vertices AdjList [][]int// Adjacency list}// NewGraph creates a new directed graph with V verticesfunc NewGraph(V int) *Graph { return &Graph{ V: V, AdjList: make([][]int, V), }}// AddEdge adds a directed edge from src to destfunc (g *Graph) AddEdge(src, dest int) { g.AdjList[src] = append(g.AdjList[src], dest)}// TransitiveClosure computes the transitive closure of the graphfunc (g *Graph) TransitiveClosure() [][]bool { // Initialize a 2D slice for the transitive closure closure := make([][]bool, g.V) for i := range closure { closure[i] = make([]bool, g.V) } // Perform BFS for each vertex for i := 0; i 0 { // Dequeue a vertex v := queue[0] queue = queue[1:] if visited[v] { continue } visited[v] = true // For each adjacent vertex, update the closure for _, adj := range g.AdjList[v] { if !closure[start][adj] { // Only update if not already visited closure[start][adj] = true queue = append(queue, adj) // Enqueue the adjacent vertex } } }}func main() { // Create a directed graph g := NewGraph(4) g.AddEdge(0, 1) g.AddEdge(1, 2) g.AddEdge(2, 0) g.AddEdge(1, 3) // Compute the transitive closure of the graph closure := g.TransitiveClosure() // Print the transitive closure matrix fmt.Println("Transitive Closure:") for i := 0; i 代码说明1. Graph 结构:表示有向图的结构体,使用邻接表存储图的边。2. AddEdge:方法用于添加有向边。3. TransitiveClosure:计算传递闭包,初始化一个二维布尔数组 closure 来表示每对顶点之间的可达关系。4. bfs:从给定的起始顶点执行宽度优先搜索,更新传递闭包数组。5. main:创建一个示例图并输出其传递闭包。
package mainimport ( "fmt")// Function to print the 2D slice in a readable formatfunc printMatrix(matrix [][]bool) { for i := range matrix { for j := range matrix[i] { if matrix[i][j] { fmt.Print("1 ") } else { fmt.Print("0 ") } } fmt.Println() }}// Floyd-Warshall algorithm to compute the transitive closure of a directed graphfunc transitiveClosure(graph [][]bool) [][]bool { V := len(graph) // Initialize the result matrix same as the input graph matrix. // Or we can say the initial values of shortest distances // based on shortest paths considering no intermediate vertex. closure := make([][]bool, V) for i := range closure { closure[i] = make([]bool, V) copy(closure[i], graph[i]) } // Pick all vertices as source one by one for k := 0; k 代码解释1. Graph Representation:• 图用邻接矩阵表示,其中 graph[i][j] 为 true 表示存在从顶点 i 到顶点 j 的边,否则为 false。2. Initialization:• closure 矩阵初始化为与输入图相同的值。3. Floyd-Warshall 算法:• 外层循环 k 表示中间顶点。• 中间循环 i 表示源顶点。• 内层循环 j 表示目标顶点。• 更新 closure[i][j],如果存在从 i 到 j 的路径(直接或间接通过 k),则 closure[i][j] 设为 true。4. 打印结果:• 使用 printMatrix 函数以可读的格式打印矩阵。运行结果
package mainimport ( "fmt")// FloydWarshall computes the transitive closure of a directed graph using the Floyd-Warshall algorithm.func FloydWarshall(graph [][]bool) [][]bool { n := len(graph) tc := make([][]bool, n) for i := range tc { tc[i] = make([]bool, n) copy(tc[i], graph[i]) } for k := 0; k 解释:1. 输入:graph 是一个布尔类型的二维切片,表示有向图的邻接矩阵。如果 graph[i][j] 为 true,则存在从顶点 i 到顶点 j 的边。2. 初始化:我们创建一个新的二维切片 tc,它是传递闭包的结果。初始时,tc 与输入的 graph 相同。3. Floyd-Warshall算法:通过三重循环更新tc。对于每个中间顶点k,检查是否存在从i到k和从k到j的路径。如果存在,则在tc中设置tc[i][j]为true。4. 输出:打印传递闭包矩阵。
package mainimport ( "fmt")// Graph represents a directed graph using adjacency list representationtype Graph struct { V int E int adj map[int][]int}// NewGraph creates a new graph with V verticesfunc NewGraph(V int) *Graph { return &Graph{ V: V, E: 0, adj: make(map[int][]int), }}// AddEdge adds an edge from u to vfunc (g *Graph) AddEdge(u, v int) { g.adj[u] = append(g.adj[u], v) g.E++}// TransitiveClosure computes the transitive closure of the graphfunc (g *Graph) TransitiveClosure() [][]bool { tc := make([][]bool, g.V) for i := range tc { tc[i] = make([]bool, g.V) } for i := 0; i 解释1. Graph 结构体:表示一个有向图,使用邻接表存储。2. NewGraph 函数:创建一个新的图。3. AddEdge 方法:添加一条从 u 到 v 的边。4. TransitiveClosure 方法:计算图的传递闭包。• 初始化一个二维布尔数组 tc,用于存储传递闭包的结果。• 对每个顶点 i 执行一次 DFS,记录所有可以从 i 到达的顶点。5. dfs 方法:执行深度优先搜索,标记所有可以从当前顶点到达的顶点。6. main 函数:示例用法,创建一个图并计算其传递闭包。
package mainimport ( "fmt")// Graph represents a directed graph using adjacency list representationtype Graph struct { V int adj [][]bool trans [][]bool}// Initialize the graphfunc (g *Graph) Initialize(V int) { g.V = V g.adj = make([][]bool, V) g.trans = make([][]bool, V) for i := 0; i
为了计算有向图 G=(V,E) 的传递闭包,我们可以使用 Floyd-Warshall 算法。Floyd-Warshall 算法是一种动态规划算法,用于在加权图中找到所有顶点对之间的最短路径。在传递闭包的上下文中,我们关心的是是否存在从一个顶点到另一个顶点的路径,而不是路径的长度。算法步骤初始化:创建一个 V×V 的矩阵 T,其中 T[i][j] 表示从顶点 i 到顶点 j 是否存在直接的边。如果存在边,则 T[i][j]=1;否则,T[i][j]=0。对角线上的元素 T[i][i] 初始化为 1,因为每个顶点到自身总是有路径的。迭代:对于每个顶点 k(从 1 到 V),更新矩阵 T。对于每对顶点 (i,j),如果从 i 到 k 有路径且从 k 到 j 有路径,则从 i 到 j 也存在路径。因此,我们更新 T[i][j] 为 T[i][j] 或 T[i][k] 与 T[k][j] 的逻辑与。输出:最终的矩阵 T 就是图 G 的传递闭包。时间复杂度Floyd-Warshall 算法的时间复杂度为 O(V3),因为有三个嵌套的循环,每个循环都遍历所有顶点。Go 语言实现
代码语言:javascript代码运行次数:0运行复制
package mainimport"fmt"// 传递闭包的Floyd-Warshall算法func transitiveClosure(V int, E [][2]int) [][]int { // 初始化传递闭包矩阵 T := make([][]int, V) for i := range T { T[i] = make([]int, V) for j := range T[i] { T[i][j] = 0 } T[i][i] = 1// 每个顶点到自身有路径 } // 根据边初始化矩阵 for _, edge := range E { i, j := edge[0], edge[1] T[i][j] = 1 } // 迭代更新传递闭包矩阵 for k := 0; k
package mainimport ( "fmt")// Graph represents a directed graph using adjacency listtype Graph struct { V int Adj [][]int}// NewGraph creates a new graph with V verticesfunc NewGraph(V int) *Graph { adj := make([][]int, V) for i := range adj { adj[i] = []int{} } return &Graph{V: V, Adj: adj}}// AddEdge adds a directed edge from u to vfunc (g *Graph) AddEdge(u, v int) { g.Adj[u] = append(g.Adj[u], v)}// TransitiveClosure computes the transitive closure of the graph// Returns a 2D slice where closure[i][j] is true if there is a path from i to jfunc (g *Graph) TransitiveClosure() [][]bool { closure := make([][]bool, g.V) for i := 0; i 0 { u := queue[0] queue = queue[1:] for _, v := range g.Adj[u] { if !visited[v] { visited[v] = true closure[s][v] = true queue = append(queue, v) } } } } return closure}func main() { // 示例:创建一个有向图 // 顶点编号为 0 到 4 g := NewGraph(4) g.AddEdge(0, 1) g.AddEdge(0, 2) g.AddEdge(1, 2) g.AddEdge(2, 0) g.AddEdge(2, 3) g.AddEdge(3, 3) // 计算传递闭包 closure := g.TransitiveClosure() // 输出传递闭包矩阵 fmt.Println("传递闭包矩阵:") for i := 0; i 代码说明1. 图的表示:• 使用邻接表(Adj)来表示有向图,其中 Adj[u] 存储所有从顶点 u 出发的边。2. 传递闭包的计算:• 初始化一个二维布尔切片 closure,其中 closure[i][j] 表示是否存在从顶点 i 到顶点 j 的路径。• 对于每个顶点 s,执行 BFS 来标记所有从 s 可达的顶点,并更新 closure[s][v] 为 true。3. 主函数:• 创建一个示例图并添加边。• 调用 TransitiveClosure 方法计算传递闭包。• 打印传递闭包矩阵。